Как вычислить площадь комнаты?

Периодически нам требуется знать площадь и объем комнаты. Эти данные могут понадобиться при проектировании отопления и вентиляции, при закупке стройматериалов и еще во многих других ситуациях.

Также периодически требуется знать площадь стен. Все эти данные вычисляются легко, но предварительно придется поработать рулеткой — измерять все требуемые габариты.

О том, как посчитать площадь комнаты и стен, объем помещения и пойдет речь дальше.

Как посчитать плошадь комнаты?

Комната

Узнать площадь несложно, требуется только вспомнить простейшие формулы а также провести измерения.

Для этого нужны будут:

  • Рулетка. Лучше — с фиксатором, но подойдет и обычная.
  • Бумага и карандаш или ручка.
  • Калькулятор (или считайте в столбик или в уме).
  • Набор инструментов нехитрый, найдется в каждом хозяйстве. Проще измерения проводить с помощником, но можно справиться и самостоятельно.

Для начала надо измерить длину стен. Делать это желательно вдоль стен, но если все они заставлены тяжелой мебелью, можно проводить измерения и посередине.

Только в этом случае следите чтобы лента рулетки лежала вдоль стен, а не наискосок — погрешность измерений будет меньше.

Прямоугольной формы

Комната прямоугольной формы

Если помещение правильной формы, без выступающих частей, вычислить площадь комнаты просто. Измеряете длину и ширину, записываете на бумажке. Цифры пишите в метрах, после запятой ставите сантиметры.

Например, длина 4,35 м (430 см), ширина 3,25 м (325 см).

Найденные цифры перемножаем, получаем площадь комнаты в квадратных метрах. Если обратимся к нашему примеру, то получится следующее: 4,35 м * 3,25 м = 14,1375 кв. м.

В данной величине оставляют обычно две цифры после запятой, значит округляем. Итого, рассчитанная квадратура комнаты 14,14 квадратных метров.

Неправильной формы

Если надо высчитать площадь комнаты неправильной формы, ее разбивают на простые фигуры — квадраты, прямоугольники, треугольники. Потом измеряют все нужные размеры, производят расчеты по известным формулам (есть в таблице чуть ниже).

Перед тем как посчитать площадь комнаты, тоже проводим изменения. Только в этом случае цифр будет не две, а четыре: добавится еще длина и ширина выступа. Габариты обоих кусков считаются отдельно.

Один из примеров — на фото. Так как и то, и другое — прямоугольник, площадь считается по той же формуле: длину умножаем на ширину. Найденную цифру надо отнять или прибавить к размеру помещения — в зависимости от конфигурации.

Как вычислить площадь комнаты?
Плошадь комнаты сложной формы

Покажем на этом примере как посчитать площадь комнаты с выступом (изображена на фото выше):

  1. Считаем квадратуру без выступа: 3,6 м * 8,5 м = 30,6 кв. м.
  2. Считаем габариты выступающей части: 3,25 м * 0,8 м = 2,6 кв. м.
  3. Складываем две величины: 30,6 кв. м. + 2,6 кв. м. = 33,2 кв. м.

Еще бывают помещения со скошенными стенами. В этом случае разбиваем ее так, чтобы получились прямоугольники и треугольник (как на рисунке ниже). Как видите, для данного случая требуется иметь пять размеров.

Разбить можно было по-другому, поставив вертикальную, а не горизонтальную черту. Это не важно. Просто требуется набор простых фигур, а способ их выделения произвольный.

Как вычислить площадь комнаты?
Как посчитать площадь комнаты неправильной формы

В этом случае порядок вычислений такой:

  1. Считаем большую прямоугольную часть: 6,4 м * 1,4 м = 8,96 кв. м. Если округлить, получим 9, 0 кв.м.
  2. Высчитываем малый прямоугольник: 2,7 м * 1,9 м = 5,13 кв. м. Округляем, получаем 5,1 кв. м.
  3. Считаем площадь треугольника. Так как он с прямым углом, то равен половине площади прямоугольника с такими же размерами. (1,3 м * 1,9 м) / 2 = 1,235 кв. м. После округления получаем 1,2 кв. м.
  4. Теперь все складываем чтобы найти общую площадь комнаты: 9,0 + 5,1 + 1,2 = 15,3 кв. м.
Читайте также:   Что такое пенополиуретан? Виды и применение

Планировка помещений может быть очень разнообразной, но общий принцип вы поняли: делим на простые фигуры, измеряем все требуемые размеры, высчитываем квадратуру каждого фрагмента, потом все складываем.

Как вычислить площадь комнаты?
Формулы расчета площади и периметра простых геометрических фигур

Еще одно важное замечание: площадь комнаты, пола и потолка — это все одинаковые величины.

Отличия могут быть если есть какие-то полу-колоны, не доходящие до потолка. Тогда из общей квадратуры вычитается квадратура этих элементов. В результате получаем площадь пола.

Криволинейные фигуры

Бывает, что в помещении есть участки, имеющие округлые формы. Значит, нужно рассмотреть варианты, как подойти к вычислениям в этом случае.

Кроме того, навыки подобных вычислений будут необходимы для расчета площади стены, на которой есть арочные дверные или оконные проемы.

Слишком сложные криволинейные фигуры, площадь которых можно определить только интегральным исчислением, рассматривать не станем – эти варианты встречаются чрезвычайно редко, и без особых инструментов здесь делать нечего.

А вот фигуры, в основе которых лежит окружность, рассчитать вполне возможно. Чаще всего на практике встречаются полукруг, четверть круга или сегмент.

Круг и сектор

Саму площадь круга найти несложно – нужно знать только его радиус (R).

  • S = π × R²;
Как вычислить площадь комнаты?
Площадь круга — нужен только радиус

Теперь – несколько примеров определения площади с секторными фрагментами круга (половинка и четверть):

Как вычислить площадь комнаты?
Помещение с участком полукруглой формы

Нужно определить площадь полукруглой залы (или арки на стене). Фигуру можно разбить на две – прямоугольник (S1) и полукруг (S2).

  • S1 = 5.00 × 2.00 = 10.00 м²
  • S2 = ½ × 3.14 × 2.50² = 9.8 м²
  • Σs = 10,00 + 9,8 = 19,8 м²

Другой пример, когда дуга соединяет две перпендикулярные стены, образуя, таким образом, четверть круга.

Как вычислить площадь комнаты?
Дугой соединены две перпендикулярных стенки

Это помещение можно разбить на три участка: два прямоугольника (их стороны выделены голубыми и желтыми стрелками), и четверть круга с радиусом, выделенным зелёной стрелкой.

Нижний прямоугольник (голубой):

  • S1 = 3.67 × (3.0 – 1.5) = 5.51 м²;

Верхний прямоугольник (желтый):

  • S2 = (3.67 – 1,5) × 1.5 = 3.25 м²;

Четверть круга:

  • S3 = ¼ × 3.14 × 1.5² = 1.76 м²;

Итого общая площадь:

  • Σs = 5.51 + 3.25 + 1.76 = 10.52 м².
Сегмент

А вот теперь – задачка несколько посложнее. Иногда округлости арок или комнат принимают форму не сектора, а сегмента, то есть части круга, ограниченной дугой и образующей дугу хордой (отрезком, соединяющим две точки на окружности).

Есть специальные формулы, позволяющие определить площадь этой фигуры на основании ее не угловых, а только лишь линейных размеров.

Как вычислить площадь комнаты?
Исходные величины для определения площади сегмента

Базовыми величинами будут служить радиус (R) и длина хорды (C) или высота (H).

Формула через длину хорды:

  • S = R² × arcsin (C/2R) – 0.25 × C × √ (4R² — C²);

А если отталкиваться от высоты сегмента, то сначала можно определить значение L:

  • L = R — H;
Читайте также:   Что такое пенополиуретан? Виды и применение

А формула принимает такой вид:

  • S = R² × arccos (L/R) – L × √ (R² — L²);

Разбираемся на примере.

Необходимо вычислить площадь такого помещения:

Перво-наперво, в этом случае необходимо найти центр окружности, чтобы определиться с ее радиусом.

Это можно сделать экспериментальным путем, перемещая самодельный циркуль (например, из шнура) по осевой линии, пока не будет обнаружена точка, расстояние от которой и до краев дуги, и до ее центра станет равным. Это расстояние – и есть радиус.

Теперь несложно промерить и все остальные параметры. R = 2.91 м, Н = 1.41 м, L = 1.5 м.

В итоге получаем две фигуры – прямоугольник и сегмент.

Как вычислить площадь комнаты?
Пример расчета площади с участком в форме сегмента

Площадь прямоугольника:

  • S1 = 5.00 × 2.00 = 10.00 м²

Находим площадь сегмента на основании радиуса и длины хорды (в нашем случае длина хорды, вполне очевидно, равна ширине помещения).

  • S2 = 2.91² × arcsin (5/(2×2.91)) – 0.25 × 5.0 × √ (4 × 2.91² — 5.0²) = 5.01м²;

(При вычислении на калькуляторе обязательно установите единицу углового измерения – радиан. При подсчёте в Excel радианы установлены по умолчанию).

Просто ради интереса – та же площадь, но через высоту сегмента:

  • S2 = 2.91² × arccos (1.5 / 2.91) – 1.5 × √ (2.91² — 1.5²) = 4.99 м²;

Полученная разница в 0,02 м² – просто результат округлений длинных дробных чисел. Очевидно, что здесь вполне можно принять среднее значение в 5,0 м²

Итого, общая площадь помещения:

  • Σs = 10.00 + 5.00 = 15.00 м².

Квадратуру стен

Определение площади стен часто требуется при закупке отделочных материалов — обоев, штукатурки и т.п.

Для этого расчета нужны дополнительные измерения.

К имеющимся уже ширине и длине комнаты нужны будут:

  • высота потолков;
  • высота и ширина дверных проемов;
  • высота и ширина оконных проемов.

Все измерения — в метрах, так как квадратуру стен тоже принято измерять в квадратных метрах.

Так как стены прямоугольные, то и площадь считается как для прямоугольника: длину умножаем на ширину. Таким же образом вычисляем размеры окон и дверных проемов, их габариты вычитаем.

Для примера рассчитаем площадь стен, изображенных на схеме выше.

Стена с дверью:

  • 2,5 м * 5,6 м = 14 кв. м. — общая площадь длинной стены;
  • сколько занимает дверной проем: 2,1 м *0,9 м = 1,89 кв.м.;
  • стена без учета дверного проема — 14 кв.м — 1,89 кв. м = 12,11 кв. м.

Стена с окном:

  • квадратура маленьких стен: 2,5 м * 3,2 м = 8 кв.м.;
  • сколько занимает окно: 1,3 м * 1,42 м = 1,846 кв. м, округляем, получаем 1,75 кв.м.;
  • стена без оконного проема: 8 кв. м — 1,75 кв.м = 6,25 кв.м.

Найти общую площадь стен не составит труда. Складываем все четыре цифры: 14 кв.м + 12,11 кв.м. + 8 кв.м + 6,25 кв.м. = 40,36 кв. м.

Объем комнаты

Как вычислить площадь комнаты?
Формула для расчёта объема комнаты

Для некоторых расчетов требуется объем комнаты.

В этом случае перемножаются три величины: ширина, длинна и высота помещения.

Измеряется данная величина в кубических метрах (кубометрах), называется еще кубатурой.

Для примера используем данные из предыдущего пункта:

  • длинна — 5,6 м;
  • ширина — 3,2 м;
  • высота — 2,5 м.

Если все перемножить, получаем: 5,6 м * 3,2 м * 2,5 м = 44,8 м3. Итак, объем помещения 44,8 куба.